
A FACILIT5_ANDARCHITECTUREFORAUTONOMYRESEARCH

Greg Pisanich

QSS Group Inc., NASA Ames Research Center
Moffett Field, CA

Abstract

Autonomy is a key enabling facto: in the advancement of the remote robotic exploration. There is currently a large

gap between autonomy software at the research level and software that is ready for insertion into near-term space
missions. The Mission Simulation Facility (MSF) will bridge this gap by providing a simulation framework and

suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers

of autonomy software to test the,r models in a high-fidelity simulation and evaluate their system's performance

against a set of integrated, standardized simulations.

The Mission Simulation ToolKit qMST) uses a distributed architecture with a communication layer that is built on

top of the standardized High Lev,_'l Architecture (HLA). This architecture enables the use of existing high fidelity
models, allows mixing simulatic,n components from various computing platforms and enforces the use of a

standardized high-level interface _,mong components. The components needed to achieve a realistic simulation can

be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior
(robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic

components in these areas but allows users to plug-in easily any refined model by means of a communication
protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures
that all the simulation models share the same information.

Biography

Greg Pisanich is a Technical Area Liaison for the QSS Group Inc. within NASA Ames Research Center's Code IC

and is Project Manager of the Mission Simulation Facility. He holds Master's degrees from Embry Riddle
Aeronautical University and Santa Clara University. His background and interests include aviation, unmanned

aviation systems (UAVs), simulation, robotics, autonomy, cognitive modeling, and human factors.

A FACILITY AND ARCHITECTURE FOR AUTONOMY RESEARCH

Greg Pisanich

QSS Group Inc., NASA Ames Research Center [gp@email.arc.nasa.gov]
Moffett Field, CA

INTRODUCTION

Autonomy is a key enabling factoT in the advancement
of the remote robotic exploration. Such systems will
need to demonstrate high leveL', of autonomy and

adaptability to accomplish their tasks without
continuous human control or intervention (Washington

et. al, 1999).

In order to accelerate the development of this

technology, NASA initiated the Intelligent Systems
(IS) program managed out of 1he Ames Research
Center. In addition to sponsoring research in

autonomous systems and algorithrqs, they also had the

foresight to initiate the development of simulation
resources, tools and facilities.

Commercial software tools developed for industrial
robot simulation have been available for years, but

autonomous systems researchers have been unable to

take advantage of these tools because they are not
flexible enough to be able to represent newly designed

robotic systems evolving in unstructured
environments.
The result has been that each research lab has had to

develop its own simulator. Becat_se of the complexity
and time required for their development, such

simulators have usually been orieTlted towards "block-
world" models (answering most aeeds while keeping

simplicity). These tools are useflfl for experimenting
with robotic autonomy, but ale not suitable for

planetary missions due to their _D world model and
limited sensors.

At the same time, sophisticated simulators have been

developed within research labo_atories to address
specific problems such as robot dynamics (Yen, Jain,
& Balaram, 1994) or instrume_t and environment

modeling (Thompkins, 1999). The_e tools offer highly
accurate models but are oriented Towards engineering

design or mission-ready simulati)n. Consequently,
even though many high fidelity m)dels exist, they are
difficult to combine into an integrated simulation.

Typically these tools are tied to a specific operating
system or computer language and _tre not designed for

applications outside of their nominal scope.
The Mission Simulation Facility (MSF) project was

initiated to bridge this gap. This will be achieved

through the development of the Mission Simulation

Toolkit (MST), a software package comprising 1) a
framework for connecting and synchronizing
distributed software models, 2) generic interfaces

abstracted from the transport layer, and 3) a set of basic

components required for a simulation.

DEVELOPMENT GOALS

We have established several goals that the Mission

Simulation Toolkit must achieve:

Provide a software framework for the

development of differing levels of autonomy.

Allow easy integration of autonomy modules and
tools into the simulation.

Be easily extensible to multiple robotic platforms
and environments.

Allow interchangeability of real hardware and

simulated components.

Be easily distributable to external groups (NASA
Sites, Educational, and Research Facilities).

Provide varying levels of simulation fidelity.

SCOPE AND APPLICATIONS

The MST architecture has been designed to support

multiple mission platforms (e.g. planetary robots,

spacecraft, underwater vehicles), with the initial focus

on planetary rovers.

Ms_m,,._o., y _ ,/

[®........ :Z.

Figure 1. Overview of the Mission Simulation Toolkit

Thecomponentsneededfora ro,'ersimulationwould
includea terrainmodel,site i,lformation(suchas
colorationandmineralcomposition),anenvironment
model(sunposition,lighting,temperature,etc),anda
rover includinga kinematicmodeland on-board
sensors,andseveralscientificinstruments.It isupto
theusertodecidewhatgranularit:-of modelsbestsuits
thepurposeofhissimulation.
Forexample,a userwhoisconcernedprimarilywith
collecting scientificdata may not require a
sophisticatedrovermodelbecausehemaynotcarehow
therovergetsfromonepointofinteresttoanother.On
theotherhand,a userwhois developingatrajectory
generatormaywanttocontroltheindividualwheelsof
arover.ForthisreasontheMS'L"providesbothhigh
andlow levelinterfacesto a aumberof standard
models.
Thisduallevelinterfaceis alsoneededto supporta
varietyof robotarchitectures._,inceverydifferent
approachescurrentlyexist, see(Coste-Maniere&
Simmons,2001)forexamples,theMSTmustprovide
an interfacegenericenough:o equallysupport
hierarchical,behavioralor hybricrobotarchitectures.
Figure1 showstheconceptsof theMSTdistributed
simulationrelyingon a commoncommunication
frameworktoconnectmodelsandmtonomysoftware.

DISTRIBUTED ARCHITECTURE

The MST architecture is derived from two main

requirements: to support distributed simulation on

multiple platforms and to ensure _xtensibility through

an open architecture.

Multiple Platform Support

Users of the MST (autonomy ctevelopers) typically

develop their tools in a variety _f environments, for
example, a LISP program unde: Solaris on a Sun
workstation or a C++ program uncer Linux on an Intel

PC. Target systems for the autGnomy software (the
rover control software) may also be developed on

different operating systems and hardware platforms.
Such software could for instance rely on a particular

flavor of Linux running on a PC-104 Pentium board, or
could be a dedicated embedded system running

VxWorks. The MSF project does not intend to develop
all the simulation components [_ut rather will take

advantage of existing tools. To minimize the
adaptation requirements, each particular software

component should be usable by the MST on the original

platform for which it was developet.

Open Architecture

The MST is a general-purpose testbed for mission
simulation rather than a specific simulator, which

implies that different sets of components will be used
for different scenarios or different domains. For

instance, one might use a kinematics model for a rover
and a fluid dynamics model for an underwater vehicle.
In addition, a component should be usable in multiple
scenarios, which means that the same rover kinematics
model could be used for various rovers with particular

payloads operating in different environments. Finally,
it should be possible to replace a component of a

specific type with another that performs the same
function but at a different level of fidelity. A simple

kinematics rover simulator could be adequate to test

high-level autonomy concepts such as path planning,

while a dynamics rover simulator including accurate
soil-wheel interactions may be required to test an
autonomous control system for the mobility of the
rover. It is therefore essential that the MSF define clear

interfaces between the components to facilitate the

exchange of components included in the MST with

those developed at other research institutions.
A way to satisfy the above requirements is to have a

distributed architecture where components

communicate with each other using a common transport

layer. The MST is built on top of the standardized High
Level Architecture (HLA), which is an architecture for

simulation reuse and inter-operability developed by the
Defense Modeling and Simulation Office (DMSO). The

MST currently uses the Runtime Infrastructure (RTI), a

software implementation of HLA (Kuhl, Weatherly, &
Dahmann, 2002) freely distributed by DMSO. The

HLA/RTI provides the MST the following services:

• Multi-platform support: IRIX, Solaris, Linux,
Win32 and VxWorks

* C++ and Java bindings

• Choice of transport protocol: TCP (reliable)

or UDP (fast)
o Publish/Subscribe scheme

• Communication through objects or messages

• Various time management schemes for

simulation synchronization

To facilitate the integration of components in an
MST-based simulation, an abstraction layer has been

developed on top of the HLA, the Federate ToolKit
(FTK). FTK is responsible for the integration of
communication entities with the Runtime Infrastructure.

The communication objects and messages defining the

MST interface are easily designed using the Unified

Modeling Language (UML). All the necessary C++
code to use these communication entities is generated

automatically.

Instrument
Simulation

f RoverA:eomplete
lar chit eotur ea va liable I

Planetary
System Model

Power ResourceM odel

RoverB:on yhigh

Figure 2: MST simulatk,n showing several components communicating through common interfaces.

Figure 2 provides an example of an MST-based

simulation with several intercorknected components.

Two separate rover autonomy software executions are

participating in the simulation: The software in Rover

A is provided by a lab having a complete rover

architecture (and probably a real rover) from the high

level control down to the hardware control; the software

on Rover B comes from a lab wc)rking only on high

level autonomous algorithms an,:t without hardware

control. When the Rover A software sends commands

to its actuators (e.g. motor l_start(:_peed, duration)), the

commands are routed to the simulator rather than to real

hardware. The kinematics simalator accepts such

commands and computes the behavior of the rover on

the terrain regarding these input;. When Rover B

issues a high level command to its base controller (e.g.

roverB_moveto (position, obstacle-avoidance=on)), the

Generic Rover model catches this message and

produces motor commands for a simple model of a

rover, causing it to move from on_ location to another

while avoiding obstacles. These r_otor commands can

be processed by the same kinematics simulator used to

control Rover A. The same scheme is used when

controlling instruments, generali._ed as sensors in

Figure 2 (the figure does not sh_)w the full path of

information flow). In addition to the Kinematics and

Instruments models, a Power l_,esource model is

participating in the simulation. It -nonitors the load of

each actuator as well as the power generated by solar

panels and computes the power remaining in the rover's

batteries. The power output of the solar panels depends

on the orientation of the solar panels relative to the sun.

The kinematics model provides the position of the

panels and the sun's position _s delivered by another

component computing the Ephemeredes. This example

shows how different components are reusable for

different scenarios, and how the definitions of the

networked MST interfaces removes all the

dependencies between the components.

THE MISSION SIMULATION TOOLKIT

A first prototype of the Mission Simulation ToolKit

was demonstrated in June 2002. It is being evaluated

by autonomy researchers within NASA Ames and is

being applied to the development of contingent plan

execution. Figure 3. shows the components and

messages that make up this release. The following

paragraphs describe the software that are included in

this internal release :

Federate Tool Kit (FTK)

The federate tool kit is a set of C++ classes forming a

layer above HLA. The FTK classes simplify much of

the development overhead of HLA, which includes

VIZ

t
Move To() Get Teemety() 0b_¢¢ Posvtmn() Objectpo._i_()
Take/maqe() Get Pcwer() Ob_d Ore_tatm_() V_ee/ O_ect C'_,b._tat.b_()

t _" I • MSF TransportTakelmage()L!y er Speed() Met°rL°id()__r t
B_ttety Lever() Wheel Speed()

Compietio:_()
Motor Lo_d

Move To()
i

Figure 3. Components and messages of the June 2002 MST release.

tasks such as joining and exi_ing, and managing

attribute updates and attributes The FTK also
maintains a local representation ol the HLA simulation

for each component. The FTK objects have also been

developed enforce proper behavior of components in
the simulation: They abstract the developer from

operations and sequences in HIA that will ensure
proper interaction with other federation objects and the
federation as a whole.

UML2HLA

UML2HLA has been developed to map UML
communications entities to an HLA implementation.

UML2HLA has been implemented in the form of a

Visual Basic plugin to Rational Rose that inputs a MST
Communication Objects Hierarch¢ and provides two

outputs. The first is an HLA FED file that is used by
HLA to describe the allowable objects in the simulation
Federation. The second is a C++ ,class library that can

be used by a simulation developer to access those

objects.

These generalized classes are based on the FTK layer,
allowing the communications objects to inherit the
facilities for accessing the HI,A transport layer

provided by FTK.

MST Communication Object Hierarchy

The Communications Hierarchy is described in the
form of UML (Unified Modeling Language) files. The

Communication Object Hierarchy describes a set of

objects that will exist in the simulation, their attributes,
and the communication messages that can be sent or

received by each object.

The Object Hierarchy is easily modified and expanded
to support additional objects or messages using any

UML tool. The Object Hierarchy as currently designed

is specialized for the simulation of Planetary Rovers,
however it can and will be expanded to support other

domains.

The conceptual communications objects are

implemented as a set of C++ classes using the
UML2HLA Process.

VIZ

The inclusion of the VIZ program module allows the
visualization of MST simulations. VIZ supports the
visualization of the terrain, the robot(s), and the output
of sensors such as cameras. VIZ also allows the

simulation developer to assess the progress and

operation of the robot using visual tools.

Figure4.An MST simulati m involving two rovers on simulated Martian terrain as visualized in VIZ.

The VIZ software was developed _t NASA Ames. The

MST team has developed an HLA interface to VIZ that
allows it to interact with MST simulation components.

Figure 4 shows example output of _he VIZ tool.

Terrain

The MST provides the capability of introducing terrain

models (consisting of DEM ard albido) into the
simulation. The MST supplies several models that

were synthesized and generated by the JPL Super

Computing Group based on Martian data models. The
MST also maintains the capability of introducing and
using terrain data from measured (real) models.

Models

The MST currently provides models of systems and

processes that are representative _f planetary robotic

systems. These include a 3D robot model, power
model, kinematic model, and robot movement

generator. The MST will be e_panded to include

additional models, including sens_rs and instruments
(cameras, spectrometers), effectors (arms, booms) and

other subsystems.

USER GROUPS

The first group involves primarily internal NASA

(Ames and JPL) researchers, including those that are
involved in the IS Program. This group is distinguished

by their need to use components that may be export
controlled or otherwise cannot be released outside of

NASA. These users would gain access to these

components from internal sources.

The second group includes users primarily external to
NASA, which would include educational and other

research institutions, including foreign groups. These
users would have access to a full range of components

that will have been developed with distribution in mind.

These components may have been developed internally
or be contributed by users of the MST. This group also
includes foreign students and researchers that may be

working within NASA. These users would be using the
MST to develop algorithms that don't involve export-
controlled software.

RELEASE STRATEGY

The release of the MST will involve several

distributions and capabilities over a nominal 3-year

period. The releases should be scheduled to correspond
to the levels of capabilities and refinements to the MST
architecture and code.

We are developing the MST to support two different

user groups. Our use of a corrponent architecture
should allow us to support both with minimal changes.

The initial release of the MST will be to internal IS

researchers (NASA Ames and JPL) and no more than

three university groups. This release will be used as a
test of the robustness of the code and the distribution

process.Weexpectto learnak,t abouthowwellwe
havedocumentedthe releaseandwhatthingsare
missingor needto beaddedto theMSTto helpthe
user.Thisreleaseshouldbeviaz=CDisscheduledfor
Winter2002.

Thesecondreleasewillbeto internalusersandwillbe
capableof linkingin export-controlledcomponents.
ThisreleaseisscheduledforSuelmer2003.Wewill
evaluatetheuseof thewebfor distributionof the
software.

The third majorreleaseof the MSTwill include
additionalcomponentsandwill betargetedata larger
groupofexternalusers.TheseshouldincludebothUS
andforeignuniversitiesandresearchgroups. We
expectthatthisversionmayinvolvethesharingand
exchangeof componentmodulesbetweengroups.We
expectthatthisreleasewill bedoneinfull viatheweb.
It iscurrentlyscheduledforWinter2003.

During2004,wewill workto de_mlopanopensource
versionof theMST,whichmayinvolveworkingwith
anexternalgroupthatfocuses(n thisprocess.We
expectthatthis versionmayalsobe licensableby
commercialcompaniesvia the NASACommercial
TechnologyOffice. Wealsoexpectthatthisversion
mayallowuserstodownloadtheMSTcorearchitecture
fromanopensourcesiteanddownloadothermodules
fromthesitesof otherMSTaffiliates.Thisreleaseis
nominallyscheduledforWinter2004.

SUMMARY

There is currently a large gap between autonomy
software at the research level and +oftware that is ready
for mission insertion. The Mission Simulation Facility

will bridge this gap by providing a simulation
framework and suite of simulaticn tools (the Mission

Simulation ToolKit) to support research in autonomy

for remote exploration. This system will allow

developers of autonomy software Io test their models in
a high-fidelity simulation and evaluate their system's

performance against a set of int,:grated, standardized
simulations.

ACKNOWLEDGEMENTS

This project is funded under the NASA Intelligent

Systems (IS) Program, which is managed by Butler
Hine.

The author acknowledges the hard work and many
contributions of the MSF development team: Lorenzo

Flueckiger, Christian Neukom, Michael Wagner, and
Laura Plice.

The author would also like to acknowledge the use of

software, development contributions, and feedback

provided by Rich Washington (Conditional Executive)
and Larry Young (VIZ).

REFERENCES

Washington, R., Golden, K., Bresina, J., Smith, D. E.,
Anderson, C., and Smith, T. (1999). Autonomous
rovers for Mars exploration. In Proceedings of

The 1999 IEEE Aerospace Conference.

Tompkins, P., Stentz, A., and Whittaker, W.L. (2001).
Automated surface mission planning considering

terrain, shadows, resources and time. In

Proceedings of i-SAIRAS 2001.

Yen, J., Jain, A., and Balaram, J. (1999). ROAMS:

Rover Analysis, Modeling and Simulation. In
Proceedings of i-SAIRAS 1999, pages 249-254.

Coste-Mani6re, E. & Simmons, R. (2001).

Architecture, the backbone of robotic systems. In

Proceedings of the ICRA 2001.

Kuhl, F., Weatherly, R., and Dahmann, J. (2000).

Creating Computer Simulation Systems: An
Introduction to the High Level Architecture.

Prentice Hall.

